Representation of Polygonal Surfaces as Displaced Subdivision Surfaces
نویسنده
چکیده
Problem statement: Displaced subdivision representation possesses a number of attractive features for efficient and convenient processing tasks like editing, geometry compression, animation, scalability and adaptive rendering of polygonal models. In this representation, a detailed surface model was built as a scalar-valued displacement map over a smooth domain surface. The construction of the smooth domain surface from a polygonal model was a challenging task in the conversion process. Approach: For building the smooth domain surface, we proposed an efficient algorithm that was based on √3-subdivision scheme, memory efficient simplification and a linear time optimization technique. Results: At some fixed level of detail, the vertex and triangle complexity of the displaced surface generated by the proposed algorithm was far less and so it resulted in better compression ratios and transmission speed. Conclusion: The proposed algorithm created surfaces of better quality, computationally more efficient and occupied less memory as compared to the original algorithm by Lee.
منابع مشابه
REVERSE LOOP SUBDIVISION FOR GEOMETRY AND TEXTURES
Reverse subdivision aims at constructing a coarser representation of an object given by a fine polygon mesh. In this paper, we first derive a mask for reverse Loop subdivision that can be applied to both regular and extraordinary vertices. The mask is parameterized, and thus can also be used in reversing variants of Loop subdivision, such as those proposed by Warren and Litke. We apply this mas...
متن کاملPolygonal tiling of some surfaces containing fullerene molecules
A tiling of a surface is a decomposition of the surface into pieces, i.e. tiles, which cover it without gaps or overlaps. In this paper some special polygonal tiling of sphere, ellipsoid, cylinder, and torus as the most abundant shapes of fullerenes are investigated.
متن کاملA Shrink Wrapping Approach to Remeshing Polygonal Surfaces
Due to their simplicity and flexibility, polygonal meshes are about to become the standard representation for surface geometry in computer graphics applications. Some algorithms in the context of multiresolution representation and modeling can be performed much more efficiently and robustly if the underlying surface tesselations have the special subdivision connectivity. In this paper, we propo...
متن کاملNon-linear Subdivision of Univariate Signals and Discrete Surfaces
During the last 20 years, the joint expansion of computing power, computer graphics, networking capabilities and multiresolution analysis have stimulated several research domains, and developed the need for new types of data such as 3D models, i.e. discrete surfaces. In the intersection between multiresolution analysis and computer graphics, subdivision methods, i.e. iterative refinement proced...
متن کاملDiscrete curvatures and Gauss maps for polyhedral surfaces
The paper concerns the problem of correct curvatures estimates directly from polygonal meshes. We present a new algorithm that allows the construction of unambiguous Gauss maps for a large class of polyhedral surfaces, including surfaces of non-convex objects and even non-manifold surfaces. The resulting Gauss map provides shape recognition and curvature characterisation of the polyhedral surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009